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Equations and boundary and initial conditions of radionuclide transfer in disperse media are formulated 

taking into account diffusion, radioactive decay, adsorption, and convective transfer. Particular solutions 

of the system of equations under consideration are obtained in the case of linear Henry sorption isotherm 

and at constant diffusion coefficients and flow velocity. The problems are extended to the case of linear and 

inhomogeneous media for given sorption equations and transfer coefficients. 

We consider the mathematical model of radionuclide migration in the presence of equilibrium and 

nonequalibrium isothermal adsorption and convective diffusion processes that are described by the diffusion 
equation 

Oc i 
Ot + v.grad c i = div (D i grad ci) + I m . (1) 

The kinetics of the adsorption process is determined by the nonequilibrium sorption (desorption) equation 

Oa 
o--7 = f ( a ,  ci), (2) 

In this case the mass source equals I m = Oa/Ot +/ext.  Thus, in order to study diffusion with due regard for 
adsorption one should solve simultaneously the diffusion equation 

Oci Oa 
0--7 + v. grad c i = div (D i grad ci) - - ~  + Iext (3) 

and the Eq. (2). 

It is known from experiments that sorption and desorption curves do not coincide with each other, and the 

so-called hysteresis takes place [1 ]. The phenomenon of hysteresis in sorption and desorption processes leads to 

both processes proceeeding under nonequilibrium conditions. In the equilibrium case the right-hand side of (2) is 

determined by the sorption isotherm 

lp (a,  c) = 0 or a -- fl (c). (4) 

Expanding, in the nonequilibrium case, the right-hand side of the equation into a Taylor series in a and c variables, 

we obtain 

0a oo E Bin aiCn BIO a l ?  4" aOc I alc 1 (5) -- = Boo + B01 + B l l  + -.. Ot i,n=O 

Retaining only linear terms in this expansion, we write the kinetic equation in the following form: 
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0 a  

Ot - BOO + B10 a + B01 c.  (6) 

The coefficients of the expansion are usually determined from approximation of experimental data. For 

instance, one can take the Henry isotherm 

a = 7 c .  (7) 

as an approximating function. Therefore, relating the right-hand side of the kinetic equation with the Henry 

equation, we obtain 

o___a =/5c - 7a (8) 
Ot 

This very simple linear kinetic equation describes monomolecular interactions. To take into account the bimolecular 

interaction, one should retain quadratic terms in the expansion. In the case of polymolecular interactions, terms of 

higher orders should be retained in the Taylor expansion. However, for simplicity we restrict our consideration to 

the case of monomolecular interactions. The unknown variables a and c enter into the equation. By setting t5 = 0 

in this equation we obtain the relaxational equation 

Oa 
0---[ = - 7 a .  (9) 

Integration of this equation with the initial condition 

t = O :  a = a  0 

leads to 

a = a o exp ( -  7 0 .  
(lO) 

In addition to the Henry isotherm, other dependences that approximate the equilibrium adsorption isotherm 

were established for various sorbents. These approximations are as follows: 

the Langmuir isotherm 

klC (11) 
a - 1 + k2c ' 

(12) 

at k2 ~ 0 the Langmuir isotherm degenerates into the Henry isotherm; 

the Haughton isotherm 

a = k 0 + k l c  + k2 c2" , 

the Brunauer, Emmet, and Teller isotherm 

k lC  . (13) 
a = (1 - k2c ) (1 + kac  ) ' 

the Freundlich isotherm 

a = k c  n ,  n <  1; (14) 

k I c n 
a = . (15) 

1 + k2 cn 

the Kisarov isotherm 

In addition, the other forms of the kinetic equation are known: 

the Hister-Wermulen equation 
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the Helfferich equation 

the Verigin equation 

Oa [ 
0-7 = ~ (ao - a) 

1 ] (16) 
c - ~ ( r  ; 

Oa 
0--'t- = Y (ao - a) ; (17) 

Oa (18) 
0-7 = yc 

etc. [1-5]. 

This variety of approximations of kinetic equations results from the complexity of adsorbent interaction 

with the sorbing substances. In what follows, we will mainly use the linear Henry isotherm (7). Sorption dynamics 
in the absence of diffusion and external sources was studied based on the transfer equations 

Oc Oa Oc (19) ~ + - ~ + v ~ = O  

and 

0a (20) 
O'--t = Y ( c  - a a )  ' a = 1 / k  1 .  

The solution of this system of equations can be obtained analytically by eliminating one of the variables a and c 

from the system. This problem was solved by Tikhonov et al. [6 ] subject to the following conditions: 

a ( x ,  0 ) = 0 ;  c ( x ,  0 ) = 0 ;  c ( 0 ,  t ) = c  o . (21) 

For a series of nonlinear sorption kinetic equations the system was solved numerically in a number of paper s within 

the context of problems of ionic exchange [7 ], gaseous chromatography [3, 8 ], mixture separation [8 ], water 

recycling [9], etc. The same problems play an important role in the purification of media from radionuclides, 

extraction of radionuclide from food, etc. 

If D r 0, one should solve the kinetic equation 

Oa = t i c  - 7 a  (22) 
Ot 

with the convective diffusion equation 

_ _  _ _  Oc 02c (23) Oc + Oa + v - - -  = D ~ - J.c + I ( x  t) 

Ot Ot Ox Ox 2 ' " 

For the solution of the system, one should set the initial conditions 

t ----- 0 : C ---- 7)1 ( X ) ,  a = ~o z (x), x > O, (24) 

along with the boundary conditions, which can be chosen in one of the following forms: 
1) boundary conditions of the first kind 

c I b = ~~ (t) ; (25) 

2) boundary conditions of the second kind 

D0C ] =~P2(t); (26) 
Ox b 

3) boundary conditions of the third kind 
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Oc [ = ~P3 (t); (27) ac  + ttD-ff-~ b 

4) boundary conditions with the time derivative 

[ Oc Ocl  = V / 4 ( t )  " (28) 
ac + /~D-~x + V - ~  b 

The last of the enumerated boundary conditions includes the linear combination of the sought function 

with first derivatives over the coordinate and time, along with all the classical-type boundary conditions of the first, 

second, and third kind. By setting/~ = 0 and v = 0 we obtain the boundary conditions of the first kind; the boundary 

conditions of the second and third kind are obtained by setting correspondingly a = 0 and v = 0. Therefore, we 

consider the solution of the system of equations under the boundary condition (28), as well as under different 

generalized boundary conditions. We consider two types of generalized boundary conditions proposed presently for 

investigation of radionuclide transfer processes. 

Radionuclide propagation in the turbulent atmosphere is described by the turbulent diffusion equation [10] 

0._~ Oc 0 u z ~ + V(kVc). (29) Ot + (vVc) - co Oz - Oz 

In the presence of deposition on the surface and secondary uplift we write the boundary condition at the surface 

at z -- 0 in the form of the mass balance [10] 

l o c i  Ocs (30) 
U z ~ + coC = - -  

z=0 Ot 

and of the variation of the surface concentration Cs resulting from the impurity deposition from the atmosphere 

Vgr I z=O and the wind pickup asCs: 

Oc----~s = rgC - asC s . (31) 
Ot 

In the absence of the pickup as = 0 the boundary conditions transform into those proposed by A. S. Monin. 

The following condition is imposed at the infinity: 

when z --, co c s --, O. (32) 

The initial conditions are as follows: 

c (x, y ,  z,  t = 0 ) =  c o (x, y ,  z),  (33) 

c s ( x ,  y ,  z, t = 0 ) =  cs0(x, y ,  z). 

This mathematical model for radionuclide transfer in the turbulent atmosphere is considered in [11 ]. Different 

generalizations of the boundary conditions for radionuclide transfer are also possible, e.g., instead of the condition 

�9 (30) we can write 

Uz ~ + coc = ~mC~ ' (34) 
z=O 

dcs OCs (35) 
d'---i- + ~, f D--ffx dx + O = O. 

The latter �9 boundary condition has the meaning of the variation in the total concentration at the surface due to 

diffusional processes and surface sources. If the total accretion does not take place, the condition can be expressed 
as follows: 
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Oc (x) + yD Oc (x) = O. (36) 
Ot Ox 

As Eq. (28), this equation contains first derivatives with respect to time and coordinate. The equation can be 

rearranged to yield the different kinds of boundary conditions. For instance, by excluding the first time derivative 

with the use of the diffusion equation we obtain the boundary conditions in the form of 

02c fl Oc (37) 
a - - +  + 6 c = 0 .  

Ox 2 Ox 

The consideration of these generalized boundary conditions dates back to the original works of A. N. Tikhonov, 

A. A. Samarskii, et al. It should be noted that A. N. Tikhonov proposed boundary conditions in which the order 

of the partial derivatives can be higher than the order of the differential equation itself [6, 12 ]. Upon separating 

variables, !he separation constant will enter not only into the equation, but into the generalized boundary conditions 

as well. Such problems today are of both theoretical and practical interest [13 ]. 

In the case of equilibrium sorption and desorption processes we consider the linear Henry isotherm (7) in 

view of which the diffusion equation (1) in a porous medium with porosity m takes the form 

(Oc O a ) O c  0 0 c  2 c _ y a + i m  (38) 
m -~-[+--~ + V - ~ x = D ~ x  O ~ -  

and is transformed to the following equation: 

a (x) OC + v (x) OC - 1 O xnD (x) OC _ d (x) c + l m, (39) 
Ot Ox x n Ox Ox 

where n = 0 for a plate, n = 1 for a cylinder, and n = 2 for a sphere, the coefficients a(x), v(x), D(x), and d(x) in 

the general case are variables determined by functions of the coordinate x, the source Im is a function of the 

coordinate x and time t and the initial condition is chosen in the form (24). 

We will solve the equation under the classical boundary conditions of the form (25)-(27) using the method 

of bounded integral transforms over the eigenfunctions v 2 of the homogeneous equation 

2 d~0 1 d d~0 (40) 
/t a (x) g, + v (x) . . . . .  D (x) - -  - a (x) ~p 

dx x n dx dx 

under the homogeneous (1)-(3) and nonclassical (4) conditions of the form 

= Dd~O = I = ~  1)~lb O; 2) O; 3 ) a u  b 

(41) 

I I :~ 4) ~ + ~ ) ~ + D - ~ -  x b 

First we consider the solution of (39) with constant coefficients a = 1; v = vo, D = DO, and a --2, and with 

the boundary conditions (41). 
As an example, we present the solution of the first boundary-value problem for (39) with the conditions 

(24), (25) for volume and surface radionuclide sources: I --- I 0 exp (-kt) ,  ~o 1 = ~01o exp (-mr) ,  ~02 = 

~02o exp ( -mr ) ,  ~02 = ~P20 exp ( -nO.  The eigenfunctions of Eq. (40) are the solutions of the equation 

d2X v dX + 2 X = 0 ,  (42) 

dx 2 D dx 

and take the form 

(vox/i X ( x ) = e x p  " ~ o  A l c o s p x + A  2 s i n p x  , (43) 
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where  p2 = #2 _ v2/4D2; A! and A 2 a re  the integration constants. In view of the boundary conditions of the first 

boundary value problem, the eigenfunctions are as follows: 

VoX ) ~n 
X n (x )=exp  ~ s i n T x ,  

and their spectrum and norm are 

n = l , 2  . . . .  (44) 

2 _ 1 ) +  
n 1 2 IIx ll z l/2 

/~ 4D 2 ' , , ..., . 

The solution of the nonhomogeneous boundary-value problem in this case is constructed using the bounded 

integral transform 

= f cexp - ~  sin xdx  
0 

(46) 

in the form of an expansion over the eigenfunctions of the problem 

c =  2(~n,  t ) = -  ~exp - s i n - - x ,  
II g n  II 2 l n=l  l 

and ~ is determined from the solution of the first-order nonhomogeneous equation that involves arbitrary volume and 

surface radionuclide sources: 

d---~-+ 2 + D  - -  +~--~ ~ = 7 +  n ~ 0 ( t ) - ( - 1 ) n e x p  - - f ~  ~Pl(t) , 

l ( v x )  
t = 0 : ~ = ~ 0  = f T ( x )  exp - ) - ~  s in--f-xdx,  

0 

integration of which in the general case yields 

~ = e x p -  2 + D - ~  +~--~ t j" I + D ?  ~ P o ( t ' ) - ( - t ) n e x p  ~-~ ~fl(t') • 
0 

2 v dt,+-~O x e x p  2 + O  ff-~ + t' . (49) 

The rest seven cases of combinations of the boundary conditions of the first, second, and third kind for 

arbitrary initial conditions and given volume (/3 and surface (~i) radionuclide sources are considered and solved 

in [i 1 ]. The paper [11 ] is devoted to the study of convective radionuclide migration upon homogeneous linear 

sorption (desorption) in homogeneous and nonhomogeneous porous layers. 
Let us consider the case of radionuclide diffusion and equilibrium sorption in bodies with simple geometry. 

These problems are solved by means of both the operational calculus and using the bounded integral transforms. 

Here we present as an example the solution of just one problem by means of the operational calculus combined 

with the methods of the residue theory at a = 1, v = v0, D = DO, d =2, Ira = 0, and ~o = 0 within the layer with the 

boundary conditions x = 0: c = 0; x = l: c --- Cl. 
The Laplace image of the Eq. (39) is as follows: 

d 2 ~ d ~ (50) 
DO-'-- 3- - (p +2) 'c  - v = 0.  

dx" dx 

The image solution of (50) is 
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with poles 

= e x p ( V ( X - 0  

2D 

ClSh [x(v 2 + 4D(p  +2) )1 /2 /2D]  

p sh [l (v 2 + 4D (p + ]t)) l /2/2D] ' 

(51) 

p = 0 and 
2 2 2 

Pi = - ]t v D n ~  (52) 
4D /2 

Then from the residue theorem we obtain 

s h [ x ( v 2 + 4 D 2 )  1 /2 /2D] exp ( v ( x - D )  + 
c = c I 

sh [l (v 2 + 4D2)I /2 /2D] 2D 

f[ /) ( -  1) n n sin (n.~x/1) 2 2 2 

2D n=l 2 / D + v 2 / 4 D  2+n2z~2/~  exp - )l--4D + D  t . (53) 
+ 

Let us consider the particular cases of radionuclide diffusion in the presence of volume and surface sources. 

In terms of these sources the diffusion equation is as follows: 

OC + v (x) OC 1 0 m Oc (54) 
- -  - x D ( x ) - - - 2 c + I ( x ,  t )  

Ft' l  r~ 

Ot Ox x Ox Ox 

where the term Oc/Ot on the lef t -hand side describes the local variations in concentration,  and  the term 

v(x)(Oc/Ox) describes the convective concentration transfer with rate v(x). The first term on the r ight-hand side 

describes the radionuclide diffusion in volume with the variable diffusion coefficient D(x), and the second term 

accounts for the radioactive decay proportional to the half-life 2 and the concentration c at each point of space at 

any time instant t; l(x, t) is the volume power of external radionuclide sources. 

By setting D(x) = O, v(x) --- O, and l(x, t) --- 0 in this equation, we obtain the following equation: 

Oc (55) 
- -  2 ~ C  , 

Ot 

integration of which by separation of variables yields 

c = c o exp ( - 2  0 . (56) 

This is the common radioactive decay law. 

The power of radioactive isotope sources I(x, t) is usually given using the expressions corresponding to the 

given source. If the usual source is space-uniform and possesses intensity I0 and decays with time according to the 

radioactive decay law, then 

I (x ,  t) = I 0 exp ( -  2it ) . (57) 

In the case of a point source which is placed at the point x0 we obtain 

I (x,  t) = I 0 6 (x - x0) exp ( - ) . i t ) .  (58) 

We choose the initial conditions in the following form: 

t = 0 :  c ( x ) = ~ ( x ) ,  (59) 

and the boundary conditions are chosen in the form of the boundary conditions of the third kind 

D (x )  + (cs  - c)  = (0. 
b 

(60) 

We write the following relationship: 
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r (t) = r exp ( -  ;tit), 

to express the surface radionuclide density. The exponential functions can be used for Cs(t): 

c s = Cso exp ( -  ;iiO" 

(61) 

(62) 

In the presence of reactions, special equations that describe the kinetics of these phenomena are used for 
the surface and volume sources. The ~o(x) function entering into the initial condition is usually given either as a 
constant, e.g., c = co, in the case of the uniform distribution of the fallen-out radionuclides, or using certain 

functions that approximate the initial concentration distribution over the coordinate; for instance, in the case of 

migration into the soil or other capillary bodies the exponential function c(x) = co exp (-;Ix), or other such 

functions, is frequently used. 
The system of linear equations of nonequilibrium sorption can be solved by various methods, for instance, 

by the method of Laplace transform, by the method of integral transforms, or by numerical or approximate methods. 
The method of separation of variables is inapplicable to the system, as we will show. We take the kinetic and 

diffusion equations (22) and (23), and, by excluding a we obtain the third-order equation 

_ _  ( Oc Oc 02c (x t) ) + 02c 03c ;I O~ c o l  (63) 02e +f lOc  + 7 - - + v - - - D  + 2 c - I  , v = D ~ -  + - - .  
Ot 2 Ot Ot Ox Ox 2 OxOt Ox20t Ot Ot 

This equation does not permit separation of variables even at I(x, 0 = O. 
We will seek the solution of the system of equations (22)-(23) under the initial conditions (24) and the 

boundary condition (28). We introduce the Laplace image of the function: 

= .~ a e x p ( - p t )  dt ;  -5= 7 c e x p ( - p t )  dt; 
o o 

7 =  ~ I ( x ,  t) e x p ( - p t ) a t ;  ip= .~ W(t) e x p ( - p O d t .  
o o 

(64) 

Applying the Laplace transform to the equation and the boundary conditions with account for the initial conditions, 

we obtain the system of equations 

- ( x )  = - 

p-5-- ~01 (X) + p'a-- ~o 2 (x) + V 
0-5 = D O2-d - / ~ + 7 
Ox Ox 2 

( 6 5 )  

and the boundary conditions 

0-5 
ac + l~D ~x + vp-5 = ~P . 

Then we obtain 

~ - v  - p +  +2  
D dx 2 dx p + y 

=$01 (X) - -7(X,  p) + 

Let us consider the homogeneous equation 

D d2-ddx 2 - v--d-Cdx - ( p 2 + ( 7 + f l + ; I )  

the solution of which we write in the form 

( x )  

P + y  

+ ; t )  ~ = 0 ,  

(66) 

(67) 
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Cho m = e x p  v x c I ch  - I - . 4 ( p 2 + ( y + f l + 2 )  p + y A )  + 
D (p + Y) "-~ 

+ c  2sh + 4 , , @ 2 + ( 7 + / 3 + t )  p+y).) + x 
D(p + y )  2 " 

We write the particular solution of the nonhomogeneous equation (66): 

2 

x s h  + 4 ( p 2  + ( f l + 7 + A )  P + 7 2 )  + 

D(p+7) 

x) 

f f ( t )  e x p ( - V ( t - x ) )  •  

x - t  
T dr.  

+ 

(68) 

(69) 

By using Eqs. (68) and (69), the relationship c = c r + ~hom, and the boundary condition, we find the constants cl 

and c2: 

(70) 
x = 0 :  

x = l :  ct~ - /uD ~x + vp~ = ~2- 

Let us consider the particular example when 

I = 0 ,  v = 0 ,  2 = 0 ,  

t = 0 :  a = 0 ,  c = 0 ,  (71) 

v = b ,  a = 0 ,  ~ = 1 .  

In this case the kinetic and diffusion equations take the form 

Oa 
- -  = t i C  - -  7a Ot 

02C Oc + Oct = D 

Ot Ot Ox 2 ' 

x = l :  

t = 0 :  a = 0 ,  c = 0 ,  

Oc - D Oc Oc Oc 
b - ~ =  -~x; x =  - l: b - ~ =  D-~x ,  

(72) 

and we find the equations for the images: 

d 2 -~ 
~ =  -p -d+  D - -  

d x  2 ' (73) 

under the condition 

d'~ 
- b c  O - p b - ~  = - D - d - x x  , x = l ; 

D d'C , - bc o + pb-6= ~ x = - l .  

(74) 
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By excluding ~, we obtain the following equation for ~: 

d 2 
+ , u ~ =  O, 

dx 2 
2 = _  p _ . p + 7 + f l  (75) 

be 
D p + y  

The  solution of this equation is as follows: 

= A 1 cos ,ux + B 1 sin bex. 

Substituting the boundary  condition, we obtain 

= A 1 cos (fix),  

where 

bc 0 
A1 = pb cos (fi/) - beD sin (fi/) " 

From this image solution we find the solution of the original in the form [14 ] 

(76) 

(77) 

bc 0 ~_~ c o exp (Pnt) cos (,UnX) (78) 
b +  + 1 l n=l fly b Pn 

1 +  1 +  ~ +  + 
(Pn + y)2 2b 2Dbe2n 2D 2ben2 

where tZn, Pn are the roots of the equations 

bPn 2 Pn Pn + fl + 7 
D - ben tan ~nl)  ; ben = D Pn + Y 

The  roots Pn are determined graphically: 

2/2 = 1~l 2 l 2 
x = #  �9 y D " ~ = ( f l + Y ) "  ' ' D , r ] = / _ ~  , 

(79) 

then 

by = d 2  tan v%-, x = - y (y + ~) (80) 
l y + r /  

The  coefficients or(x), a(x),  and b(x) that enter into the diffusion equation (54) are considered to be given 

known quantities in the case of the phenomenological description of the mass transfer processes. They  can be 

determined either experimentally in special laboratories, or theoretically based on more general approaches to the 

descr ip t ion of the matter,  for example, on the basis of the kinetic or statistical theory and using the solution of the 

so-called inverse problems from the additional experimental information on heat- and mass transfer processes. For 

instance, the diffusion coefficient D can in the general case be presented as a complex-structured function of 

independent  variables, coordinates, and time, and of the initially unknown thermodynamic functions of state, 

namely ,  concentration c, temperature T, pressure p, etc. The  value of the diffusion coefficient depends on the 

intrinsic structure of the bodies and media under  consideration. In the solid and gaseous states it can take different 

values f o r  different  substances, and is usually available from handbooks. In an analogous manner,  the other  

coefficients can vary in both time and space, and they can also depend on certain quantities and parameters.  

In o rder  to determine the velocity v one should solve the diffusion equation simultaneously with the 

equations of motion, the energy equation, and other equations describing the heat- and mass transfer  processes. If 

we restrict our  at tention to consideration of the sole diffusion equation and the Fick's law, then the law of velocity 

variations should be given, generally, as a function of coordinates and time. The  same notion holds also for all the 

remaining funct ions entering into the diffusion equation (54) and the initial (24) and boundary  (25)-(28) 

conditions. If the coefficients entering into the equation are constant within the entire region under  consideration, 

then such a medium is referred to as homogeneous one. If the coefficients are varied as piecewise smooth functions, 
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then the medium is nonhomogeneous. In the case where these coefficients depend also on the unknown sought 

functions, then such media are nonlinear. The nonlinear problems of diffusion and filtration theory are most 

complicated and are still poorly investigated, and various exact, approximate, asymptotic, and numerical methods 

are used presently in their investigations. 

The above-considered operational method of separation of variables is widely used in studies of diffusion 

and filtration processes in homogeneous and nonhomogeneous media subject to certain constraints. In order to 

apply the Fourier method the equation under consideration and the boundary conditions should permit separation 

of variables. When the variables in a given problem are separated, the problem of investigation of the partial 

differential equations under the given initial and boundary conditions is reduced to the boundary-value problems 

for the ordinary differential equations, and consists in the determination of eigenvalues and eigenfunctions with 

the use of which the solution is constructed either as a series in eigenfunctions in the case of a discrete spectrum, 

or in the form of integrals over the eigenfunctions in the case of a continuous spectrum. 

In certain nonhomogeneous media the material parameters are varied in space or in time in such a manner 

that the separation of variables in such equations leads to the well studied special functions. For example, if in Eq. 

(54) D(x) = 1, v(x) = 1 /x ,  and 2(x) = 0, then this equation is the Bessel equation whose solution is well studied. 

Therefore, the main boundary-value problems are easily solved for such media. A series of approximations of the 

functional dependence of the parameters of a nonhomogeneous medium leads to other well studied types of 

equations. Inasmuch as all the parameters of nonhomogeneous media can be determined experimentally only with 

certain errors, the method of approximation of the parameters of nonhomogeneous media can be successfully used 

for the solution of a particular problem. In this case one uses approximating functions that can reduce the original 

equation with variable coefficients to an equation with structure close to that of the initial equation, but whose 

solutions can be obtained much more easily or are already known. Of all the possible equations, those whose 

solutions are most adequate to the given problem are chosen. This method is widely used for the approximate 

solution of linear and nonlinear ordinary and partial differential equations. 

Usually, power, exponential, polynomial, and other functions are widely used for the approximation of 

parameters of nonhomogeneous media. However, even in the case of an arbitrary analytical dependence of the 

material parameter on coordinates or time, it can always be expanded into a Taylor series in powers of the 
argument, since any analytical function is Taylor-expandable: 

oo 

a2 x2 f ( x )  = a 0 + a l x  + + ... + a , , x"  + ... = a , ,x"  
rt=0 

or, in the multidimensional case, 
o o  

f ( x ,  y ,  z) ~ i " k = aijkX 3]z . 
i,j,k=O 

Usually, already several first terms of the series approximate well the properties of the experimentally 

determined parameter of the nonhomogeneous medium, and a polynomial can be used instead of the series. 

Differential equations for nonhomogeneous media with polynomial approximations include variable 

coefficients in polynomial form; certain of the equations are already studied, and others lead to new special 
functions. 

In the case of the polynomial approximation, Eq. (67) takes the form 

PO (x) d2X + Pl (x) d X  + P2 (x) X = O, (81) 
dx 2 dx  

where the coefficients po(x), p l (x ) ,  and p2(x) are polynomials of the form 

Po(X) = a O + a l x +  a2 x2+ . . .  + ak xk,  

Pl (x) = b 0 + blx + b 2 x 2 +  ... + bnx n , (82) 
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c2x2 m P2 (X) = c o + c lx  + + . . .  + CmX . 

These equations arise when a nonhomogeneous media with polynomial approximations of parameters are studied, 

as well as when separating variables in multiple orthogonal coordinate systems, when the polynomial p2(x) depends 

on a separation constant that can be related to co. 

In studies of linear equations of the general form with variable coefficients, the so-called singular points 

o f  the differential equation play an important role; they are such values x0 of the argument of the differential 

equation of the form (81) in which the functions po(x), pl(x), and p2(x) possess characteristic singularities. If these 

functions take finite values in the point x --, xo, then the point xo is called usual; otherwise, it is singular. The point 

x = xo in which Pl (x) /po(x)  and p2(x)/po(x) are divergent but (x - xo)pl/Po and (x - xo)2p2/Po remain finite, is 

called a regular singular point. The point x = xo is called an irregular point or a significant singularity if 

pl(x) /po(x)  and p2(x)/po(x) diverge faster than 1 / (x  - xo) and 1 / (x  - xo) 2 at x --, xo, respectively; in this case 

xo is assumed to take finite values. 

If x o xo ~ oo, then using the substitution 

x = 1 /z  (83) 

Eq. (81) can be put in the following form: 

( l z )  4 d 2 X [  2 PO z + 2z 3 
- -  - z p l  
dz 2 

1 

z 1 (11 d X  + P2 - X = O. 
dz z 

(84) 

If all the coefficients [2z a - zZp(1/z )] /po(1/z )z  4 and p2(1 / z ) /po(1 / z ) z  4 are finite at the point z = 0, then 

the point z = 0 is called an ordinary point. If the coefficients diverge, but not faster than 1/z and 1/z 2, respectively, 

then the point (z -- 0, x --, oo) is called a regular point, otherwise it is an irregular singular point. 

F o r  equations with regular singular points Fuchs proved an important theorem and gave methods of 

solution; therefore, these equations were named after him. To ensure that the linear differential equation 

Y" + Pl (x) y' + P2 (x) y = 0 (85) 

possesses a fundamental  system of solutions yl(x) and y2(x) that can be presented in the vicinity of x -- xo in the 

form 

Yl (X) = (X -- XO) rl ~01 (X) ; Y2 (X) = (X -- Xo) r29o 2 (X) (86) 

or 

Y2 = y l ( x )  [ A l n ( x - x 0 )  + ~ 0 ( x ) ]  

where T1(x), ~o2(x ), and ~0 (x) are single-valued analytical functions that possess not more than one pole at the point 

xo, it is necessary and sufficient that pl(x) and pz(x) possess poles of not more than first and second orders, 

respectively, i.e., 

A (x).  B (x) (87) 
P l ( x ) =  x '  P z ( x ) =  x ' 

where 

k (88) 
A (x) = ~ anX ; B (x) = bn xn.  

n=O rt=O 

Then the equation takes the following form: 

2 ~r 
x y + x A ( x )  y ' +  B ( x ) y = O .  (89) 

Let the functions in the form of the generalized power series 
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y = cnx �9 
n----O 

(90) 

satisfy this equation. Here r and Cn are not yet  defined. Accounting for the relationships 

xy = X  r ( r + n )  Cn xn ,  
n = O  

x 2 :  x r ~ (r + n) (r + n 1) n 
~ CrtX , 

n = O  

(91) 

we obtain after substituting (90) and (91) into (89): 

n n n 
(r + n) (r + n - 1) cnx n + (r + n) Cn xn ~, anX + CnX ~ bnx = 0 

n=0 n=0 n=0 n=0 n=0 
(92) 

or, equaling coefficients with similar powers of x: 

( r + n ) ( r + n -  1) c n +  ~ [ (r + m) an_ m + bn_ m l cm = 0 .  
n=0 m=0 

The  series (93) will satisfy the equation if 

oo 

( r + n ) ( r + n -  1) c n +  ~, [ (r + m) an_ m + bn_ m ] c r e = O ,  
m=O 

i.e., the  recurrence relationship 

•--1 

[ (r + n) (r + n - 1) (r + n) a 0 + b 0 ]c n = ~ [ (r + m) an_ m + bn_ m ] c m . 
m = 0  

(93) 

(94) 

(95) 

is satisfied. 

We write several first expressions by equating to zero coefficients with powers of x: 

r 
X 

r + l  
X 

r + 2  
X 

[ (r - 1) r + aor + b 0 l c o = 0 ,  

[ (r + I) r + a 0 (r + 1) + b 0 ] c 1 + alrc 0 + blc o = O, 

[ ( r + 2 ) ( r +  1) + a  0 ( r + 2 )  + b  0 ] c  2 + a  1 ( r +  1) c 1 + a 2 r c  O + b l c  1 +b2c  0 = 0 .  

(96) 

Since co # 0, then, in order  to determine r of the generalized series we obtain the so,called characteristic equation 

r ( r -  1) + a 0 r +  b 0 = 0 .  (97) 

Its roots are 

rl,2 = ~ + _ bo , (98) 

it should be noted that they are equal at ((ao - 1) /2)  2 = bo, different at (ao - 1)2/4 > bo, and imaginary at 

(ao -- 1)2/4 < bo. We assume that Re(r  0 - Re(r2). Then the series 

n (99) Yl ( x )  = x rl  c . x  , 
rt=O 

corresponds to the root r 1 of the determining equation, and the coefficients Cn are determined from the recurrence 

relationship (95). 

Two cases should be considered separately for the other root r2: 
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1) S -- rl - r2 is an integer positive number  or zero. 

2) S -- r 1 - r 2 is noninteger. 

The  latter case is nonsingular and gives the second linearly independent solution in the form 

Yz (x) = x r ~ gn xn . (100) 
rt=0 

However, the former case is singular. In order  to find the second independent solution we will use the formula 

n (101) Y2(x)=c2Y l l n x + x  r2 ~n x , 
n=0 

where the coefficients ~'n are determined after equating to zero multipliers with similar powers of x n in the terms 

that do not contain In x as a multiplier. 

The  general solution of the Eq. (85) is represented by the sum of two linearly independent  solutions Yl 

and Y2, i.e., 

y = ClY 1 (X, a) + c2Y 2 (X, r (102) 

T he  functions yl(x, a) a n d  yz(x, a) are also called fundamenta l  solutions, and with their  help solutions of 

homogeneous and nonhomogeneous boundary-value problems can be constructed. To do this, we consider the 

unified record of the boundary conditions in the form of the so-called generalized fifth boundary-value problem 

[15]: 

( ou) 
alU + fll ~X X=0 + 

+ 

x = a  

(o4 +,,O xl t =o 
X = a  

(103) 

where a i and fli are coefficients the choice of which can transform the boundary conditions (103) into the boundary  

conditions of the first to the fourth kind. 

Upon separat ion of variables the boundary-value  problem for the function y is t ransformed into the 

following form: 

a l y  (0) + a2y (a) + f l lY '  (0) + fl2Y' (a) = O, 
004) 

aay (0) + a4Y (a) + flaY' (0) + fl4Y' (a) = O. 

In order  to determine the constants Cl and c2 and the separation constant a w e  will use (102) and (104): 

[alclYl + Ctlc2Y 2 + a2clY ~ + Y2a2c2 + 

+ fllClYl + fllc2Y2 + fl2clY'l + fl2c2Y'2lx=O = 0 ,  

(105) 
l a3clYl + a3c2Y z + a4c2Y' 2 + a4ClY ~ + 

+ flaClYl + f13c2Y2 + fl4ClYl + fl4c2Y2[x=a = O, 

The  system of homogeneous equations has a solution if its determinant equals zero: 

I (alYl + r + fllYl + fl2Y'l) (alYZ + a2Y2 + fllYZ + fl2Y2) [ (106) 0 .  
I 

(cr3Yl + a4Y'l + fl3Yl + fl4Y'l) (ct3Y2 + ct4Y2 + flaY2 + fl4Y2) ] 
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From a consideration of the determinant, a transcendental equation with respect to the unknown parameter 
a is obtained, and, consequently, we find the eigenfunctions Yl (x) and y2(x) with the use of which boundary-value 

problems of various kinds are solved. 
If the parameters of the medium vary periodically in space, than instead of polynomial approximations of 

the coefficients, the Fourier series 

f (x) = ~, a n cosltn x + ~ b n sin tzn x ,  

should be used, and then the solution of (54) is reduced to investigation of equations with periodic or quasiperiodic 
coefficients, the theory of which is well developed [16 ]. In the case of nonlinear dependences the solution can be 
obtained in exceptional cases [13 ]. Therefore numerical, approximate, asymptotic, variational, and other methods 

play an important role here. 

N O T A T I O N  

Ira, mass source of the ith component being adsorbed in the solid dispersed phase; ci, concentration of the 
diffusing substance; v, velocity; t, time; a, concentration of the radionuclide being adsorbed; f, a certain function 
dependent on the interaction law of the adsorbent with the sorbing substance; y, the Henry constant; k, ko, k], k2, 
k3, and n, certain constants; co, radionuclide concentration at x =0;  ~o 1 and ~o2, given functions of the coordinate 
x; c, impurity concentration in the atmosphere; o~, gravitational impurity sedimentation rate; v, vector of the 
gravitational wind velocity; us, k, vertical and horizontal diffusion coefficients; a, r ,  6, certain coefficients; co, 

radioactive isotope concentration at t-- 0; ;l, half-life; 6(x), Dirac's 6-function; tim, mass transfer coefficient; Cs, 

surface radionuclide concentration; O(t), surface density of external radionuclide sources; p(x), coefficients. 

Subscripts: ext, external source; b, boundary. 
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